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Chapter 1

Introduction

In this thesis we study the significance levels and powers of repeated significance test
(RST). A ST is the sequential version of the generalized likelihood ratio test. To be more
prccise, let us consider the following testing problems Let X;,Xp,--- be i.i.d. according to
the distribution function Fy where {Fy} form a multiparameter exponential family. By that
we mean Fy has the form Fy(dz) = ¢3¢ Fy(dz) for some smooth function ¥(-) from the
parameter space © into R’ and some distribution function Fy over RY. It is well known that
EyX; = p(8) = Vy¢(0). Méfeover, there is no loss of generality to assume that p{0) = 0.
Sometimes it is convenient to index this family by p and write F,. Let 6, be a proper subset
of © C RY. If we want to test Hg_: 0 € 69 against H; : 0 ¢ 6. The generalized log likelihood

ratio statistic after observing X;, X3, -+, X, for this testing problem is
nA(Sn/n) = sup £u(0) — sup L(0) = né(Sa/n) — ndo(Sn/n)
0co 8€6,

where {,(8) = 0'S, — ny(0) is the log likelihood after observing Xj,: -+, Xn, Sn = Y1, Xi

=1

and
#(z) = sup[?'z — ¥(9)], éo(z) = sup [z ~ $(9)).
tco #€600 }
The RST is defined in terms of the following stopping rule

T = inf{n > mg, nA(S./n) > a}.

It stops sampling at T A m and rejects Hy when T < m. The significance level and power of
the RST are given by

max P{T < m}
©o
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2  Chapter 1: Introduction

and Pp{T < m} 0 ¢ Og where Py denotes the probability law under which X;, Xa,-- - are i.i.d.
according to the distribution function Fy. In some cases when one expects a small deviation
from the null hypothesis and wants to increase the power, one may use a modified version of

the RST. The MRST rejects Hy when either T < m or T > m and mA(Sy,/m) > ¢ for some
c<a.
Observe that when we fix ¢ and let @ tend to co then it is unlikely that the log likelihood

ratio process nA(S,/n) will cross the level a before time m and the rejection region of the

ccrresponding MRST reduces essentially to {mA(S,/m) > ¢} which is exactly the rejection
region of a fixed sample test. On the other hand if we set a = ¢ then the corresponding

MRST is just RST. So the MRST can be thought of as a family of tests interpolating the
fixed sample size test and the RST.

Underlying this interpolation, there is a trade-off between expected sample size and
power, that is, as a moves from ¢ to co the power of.MR.ST increases to that of a fixed sa.mi:le
test at the cost of increasing the expected sample size. So with MRST at hand the designer
of an experiment has one more degree of freedom to choose in fulfilling his needs. If he thinks
power is more important he may choose 8 MRST with a substantially larger than ¢. If smaller

expected sample size is desired he may choose a close to ¢.

The power of the MRST is given by

Py{T < ma} + Py{T > m, mA(Sm/m) > ¢}

= Py{mA(Sm/m) > ¢} + Po{T < m, mA(Spn/m) < ¢} . W

The quantity (1) also appears on other occasions. Siegmund (1985) suggests defining the

attained significance levels for a RST as follows:

(i) ¥ T = mo and mgA(Sm,/mo) = z > a then the attained level is supg, Ps{moA(Sm,/mo)
> z}.

(i) ¥ T = n € (mq, 1] the attained level is supg, P{T < n}.

™ e
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Section 1.1: Forward Method 3 hy
(iii) If T > m and mA(Sm/m) = ¢ then the attained level is
sup[Py{T < m} + Pp{T > m, mA(Sm/m) > ¢}} '.:l_
=1 -
= sup|Pe{mA(Sm/m) > ¢} + Po{T < m, mA(S/m) < ¢}]. 1
(=1} N
In case (iii) above the attained significance level is of the same form as (1). :
A
i In this thesis we only consider a special kind of Oy, e.g. 5
, € ={0:0,=--=0; =0} d<d
>
‘ By reparametrization ©g can be generalized to 8y = {Af : § € ©} where A is a d x d matrix. :.::
i Typically the significance level and power of the RST and MRST cannot be computed exactly
i ) and some sort of approximation is required. Approximations for significance levels of the i
RST in exponential families have been provided by Woodroofe (1978) and Lalley (1983).
. Their setting is more general than that above, but their methods are not as successful in
' approximating the power of the RST and to power and significance level of the MRST. In o
?
! what follows we shall exhibit with a simple example three methods which have been developed ]
: by previous authors. Let X;,X,,:-- be i.i.d. according to N(#,1). We want to test § = 0 \
l against § # 0. The RST in this case is defined by the stopping rule 4
- h
T =inf {n > m,, S2/(2n) > a}. L_‘:
-
fp-

1.1. Forward Method.

N o

The essential ingredients of this method are the likelihood ratio of a mixture measure

o
")

Q and the probability measure Py under the null hypothesis, and the Wald likelihood ratio
identity. Let Q(A) = f::o Py(A)d6 then

l
- e
: o -3
d—Q(Sl, < 8p) = | exp(8S, — n?/2n)dd = (2x/n)2cSA/2n, ¢
dPy -0 &
o
. Here the notation 55(}') means that s and v are considered to be measures on the o-field "
! generated by Y, and %(Y) is the Radon-Nikodym derivative of the rcstricted measures.
: :
| <
N
n

. PR O L T T TR P A T A R W A P L AT A A NS IS
R AP i A A e S Ty P R ‘.‘-_)‘.~_;'.‘-.'1-"J-V\“ AR RS s aNAAL Y ~. \--‘ -‘N - .‘-'.‘f A



4  Chapter 1: Introduction

By Wald'’s likelihood ratio identity
Py{T < m} = Eq{(T/2x)"?c~5/?T; T < m}
o
= [7 B{@ /2y expl=(0 4 Ra(T)); T < m)ds
-0
o0
= (a/x)llzc"'/ Ey {(T/2a)‘/ze"n"'(m; T< m} dé
—c0

where R (T) = (S2/2T - a) is the corresponding excess over the boundary for this problem.

Before we go any further; let me introduce some notation. Throughout this work I use
R(T) to denote the excess over the boundary corresponding to the stopping time T'. Usually
the stopping time depends on a scale parameter m. To emphasize the dependence on w I
also write R (T') or Ry, if it does not cause confusion, a_nd Roo(T) or Ry the corresponding
limit in distribution as m — oo.

If a, m, mg tend to oo in such a way that (2a/m)*/? = 8, < 8 = (2a/m,)*/? then an

argument using the strong law of large qumbers shows that with Pjs-probability one

(T/26)*1 o< <m) = 077 19, 00](0)

and , 4
Po{T < m} ~ (a/:r)‘/’e"'/ o o_xE‘{c-Rw(T)}do
[

1
. Now Bg(e~R=(T)) can be approximated using nonlinear renewal theory developed by Lai

and Siegmund (1977, 1979) or Woodroofe (1976a) and the approximation is completed.

This method has been generalized to RSTs for curved exponential families by Lalley
(1983).

1.2. The Backward Method.

The backrard method which is due to Siegmund (1985) sets its primary goal on approx-
imating the conditional probability P{™)(4) = P{A | S = £}, which by sufficiency of S, is
independent of . Then the power and significance level may be obtained by unconditioning
with respect to the distribution of S,. In Chapter 3,4 we shall generalize this method to

multiparameter exponential families.
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Section 1.2: The Backward Method &

The essence of this method involves randomizing the starting point of a process, then

treating it like a process running backward from the point of conditioning. Let PA(:Z)(A) =

P(A|So =), Sm=¢) and T* = sup{n < m, §3/2n > a}. Observe that PJ:?)(T <m)= s
PUNT* 2 my). Let g

B (a) = [ PR A arm) 1/ exp{={(A - €)*/2mi}aA :

Then - (m) k;
dP 1/2 s g "
¢ _(p §
_(_';_).(Sm---,sm)— (;) exp (;ﬁ—ﬁ)' N
dPy ¢ - N
F
Since under the reversed time scale T* is a stopping time, Wald’s likelihood ratio identity i
gives
(m) (e ~gm [(m\ (51, g
P™(T* > mq) = EY {(T) exp (-5 )i T 2mo .

The P/™ distribution of Sna, n=m,m— 1, - running backward from S, = £ is the same as
4

the Fp distribution of § — §,, n=0,1,-- running forward.

Hence the expectation above equals ")

1/2 2 2
Eo{( e ) exp[;—m—(—s—'i—{)— 'rSm—mo}

m-—r 2(m-r1))’

where r = inf{n > 1, (£ + 8.)/[2(m — n)] > a}. Assume that 6, = (2a/m,)*/? and
£ = m~1£. A law of large numbers argument shows that r/m — 1—(£o/6;)* with probability

ope as m — co. The quantity above is approximated by -

(mdy/€) exp(—a + £2/2m) Eo{e~ "1}

wkere 3

Bou(7) = {(S: = */[2(m - 7)]} ~a .
is the excess over the boundary at the stopping time r. Again nonlinear renewal theory can
be used to obtain the asymptotic distribution of Rey(r) and the approximation for Pe("" (T < ‘~
m) is compleied. Unconditioning £ using the marginal distribution of S, under Py yields =
Po(T < m). g

...................
......................................
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6  Chapter 1: Introduction

We may uncondition £ using Py with  # 0 and obtain an approximation to the powers.
Unfortunately the result is not a bona fide asymptotic expression, although the numerical
results show that it is a very good approximation. See Siegmund (1985) Section 9.3 for
details.

1.3. Woodroofe’s Method.

This method, which was developed by Woodroofe, is quite different from the two meth-
ods described above. It does not use Wald’s likelihood ratio identity. The method fizst
approximates Po{T = n} then estimates Po{T € m} by summation. Observe that Pi{T =
m} ~ 2P{T, = n} where T} = inf{n > mo, Sn > v/2na}

Py{T, =n}= /‘;‘; PC(")(T“' > n —1)(2xn) "2 . exp(~£2/2n)d¢.

It is easy to see that the only values of £ which are of first order importance are v/2an +0(1).
In this range we can approximate the curve v/2na by its tan'gent and the conditional random
walk by an unconditional one (with drift £5). That is, let £ = v/2an +y where y is arbitrary
but fixed.
P{NT, > n =1} = Po{% < V2akfor all mo S k < n = 1| Ss = V2an +y}

= Py{Sn = Si > y+V2(n'/? - k%) for all my < k < 1| S, = V2an + ¢}

= P{S; > y+V2(n'? - (n—-i)/*) forall 1<i <n—my | -i—" = pu' +0(1)}.
Observe that v/2n[n!/? — (n - {)1/2] = : 2an~1/2{ 4 0(V2an—12n—3/232) Iu'iif nand
a tend to infinity in such a way that (2a/n)*/2 — p*. The conditional probability above is
asymptotically equivalent to

Py{Si>y+ -;-y.‘i for all§ > 1} = P,e/o{S; > yforalli > 1}

To continue we need

Lemma 1. (Woodroofe, 1982, p. .) Assume p = EX; > 0. Let M = min(S5,, S,--).
Then for z > 0

(E(5:,)) P(S,, > 2} =p~'P{M >z} where ry=inf{n2>1, S,>0}

A
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Sectson 1.8: Woodroofe's Meihod 7

Proof: Define a = sup{n: S, = M} and - = inf{n 2 1, S, < 0}. Consider the probability
P{a =n, M > z}. By restarting the random walk at time n, we find that

Pla=n, M>z}=P{r_ =00} -P{S,<Si, i=1,---,n-1 §,> z}.

A time reversal argument shows that
P{Sp < Sis=1,---,n-1,8,>z}=P{S5;<0,i=1,---,n-18, >z}
“ = P{ry =n, S;, > z}.

Combiz ing all the results above, we get

x o
P{M>z}==ZP{a=n,1‘.l>z}=ZP{r. =o0o}P{Sph < Sii=1,---,n~ 1,8, > z}

u=} n=1

= P{r- = o0} i}’{r.,. =n, 8, >z} = (En) ' P{S,, > z} = p(ES,,) ' P{S,, > z}

n=1
We have used the duality relation P{r_ = 0o} = (Er4)~! and Wald’s identity ES,, = pEry
in the fourth and fifth equality above. The proof is completed. ’

By lemma 1 and the argument given above
Po{T = n} ~ 2P0{T+ = n}
o _
~ 2/ B [Eyesa(8r, )] Puosa{Sr, > z}(27n) ™12 - exp{~[(2an)*/? + y?]/2n}dy
0 .

~ n“(a/:r)‘/zc'“/ [Ep./z(S,+)]'lP‘,./2{S,+ > z}e"”"dy.
0

The integral above e:, als limg—oo Eye exp[— Ry(T')] by nonlinear renewal theory, where Rq(T)
= S§%/2T — a. Summing over n and approximating the sum by an integral yields the desired
result. Now- we are in a position to make brief comments on the three methods described

above.

If one were only concerned with the significance levels of the RST then the forward
method is the most general of the three. If one wants a second order approximation to the
significance level then Woodroofe's method seems to be the appropriate method to use. Since

the Monte Carlo results in Chapter § show that the “obvious” second ordesr correction works

quite well, the complicated second order correction developed by Takahashi and Woodroofe

.""...,‘.A.A. T
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8 Chapter 1: Introduction

(1981, 1982) seems to be unnecessary (at least in those cases). But if we restrict our attention
to the linear hypothesis, then the backward method produces the most fruitful results, that
is, it can be used to approximate the significance level, power, and p-values of the RST and
MRST. One of the major contributions of this thesis is to generalize the backward method to

multiparameter exponential families.

The rest of the thesis is organized as follows. In Chapter 2 the simple nuil bypothesis
case is considered and a theorem which relates the excess over the boundary by the forward
and backward process is proved. Chapter 3 deals with the composite hypothesis problem.
The results there indicate the necessity for studying the conditional renewal theory which
is the topic of Chapter 4. An application to the “change point® problem is also given.
Chapter 5 contains a careful treatment of an important example: the repeated t-test. The
numerical approximations of powers and significance levels of RST and MRST and the recults
of corresponding Monte Carlo experiments are also reported. Finally, the Appendix gives some

details of the numerical computation performed in Chapter 5.
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Chapter 2

The Simple Null Hypothesis Case

When 6¢ contains only one point the backward method generalizes to the multipzram-
eter exponential family easily. Without loss of generality we assume 8y = {0}. In this case
the stopping rule is T = inf {n > mg, nd (%‘) > a}. Define T* = sup {n <m, no (%l) > a}
then P{T < m} = P{T"* 2 my}. Now

9B 5o ) = Fl5a = V()
dP("') mOm In(Sn)fm(€=A)

where fu(:) is the density of S, under Fp, we assume f, exist and satisfy the condition given

in Proposition 1 below.
P (A) = Py(A| So = X, Sm = £).
Also define ¢(4) = [ P,{’";)(-4)fm(f — A)dA. The likelihood ratio of Q with respect to Pe("') is

easily calculated as

dpy fm(£)
Ln d,,(...,(sn, RESEY = R )

The Q distribution of §,, n = m,m — 1,- .- running backward from S,, = m§ is the same as
the Py distribution of m{, — S,, n = 0,1,--- running forward. Under the reverse time scale

T* is a stopping time so the Wald likelikood ratio identity gives

Pé’")(T <m)= Pé"‘)(T° 2 mg) = Eg {L;l; T > mo} = Eq {M T2 mo} .

Sm(€)

Let 7 = inf{n > 1, (m-n)é (f—ﬂ) > a}. Note that under @ m — r kas the san:e distribution

. -l T e Ty e
-‘d AT 2 g

T
4

Y




T T T T N W N e T

10 Chapter 2: The Simple Null Hypothesis Caae

as T under Py so the expectation above equals

fm—r(f - Sr)
Fo { Fnl6)

;rSm—mo}.

It is not bard to see that if

t¢°=inf{t; 1“_"t=¢(15_°t)} (2.1)

exist and 0 < tp < 1 — T2 then r/m — t¢, with probability one, where a = mao, § = méo,

and the expectation above is approximated by

s { =)

To continue the computation we need

Propositicn 1. If for scme integer ng, for some n 2> ng S, has a bounded continuous density

f. with respect to Lebesque measure on RY, then as n — oo
falnz) ~ (22n) (B (c)|"Y/2 - exp[-né(2)],

where $(z) = V24(6(z)), the covariance matrix of X; under Po'(z)'

Proof: See Borovkov and Rogozin (1965).

- ~ [22(m - )]~ £=5r
frer(€ = 8~ l2x(m = )97 g (£
fm(£) ~ (22m)~92|D(&y)| 72/ 2e—me(&0)

By Proposition 1

e mn (2

(B2}~ n{ () mer o (52)
" exp ['"¢(fo) -(m-r1)¢ (%;_-_:s?,)] }

-2
exp[~m(ag — ¢(&o))] - Eof{e~Bm ()}

= (1 = tg,)"Y/2|5(6o) /2 -

H( %)

where Rm(7) = (m —r)é (ir—_‘s}) — a is the excess over the boundary at stopping time r. Let
Ke(t,z) = (1-t)¢ (5{’7—5’-) Theorem 2 of Chapter 3 of Hogan (1984) asserts that as m — co
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22 Chapter 4: Nonlinear Renewal Theory for Conditional Random Walks

Observe that
Vel (&”) = vig? - - 4P
=6 + (6 — V0, 9@ (0)) - (6 - €9)

=6
Py
where J(o(‘f’ — ft()z)) is the Jacobian matrix of the mapping 0(()2) - f(()z), So j
Y
(m = )D€ ~ §P)/m — n] = (m ~ n)pA (") + (n&s” ~ SN0 +0(1) as. )

= m¢(2)(&(’2)) - 15(2)0(2) ‘/)(2)(0((,2))] +0o(l) as.. i

Substituting the equation above into (4.1) completes the proof.
Before we investigate tie nonlinear boundary crossing problem let us consider the linear :i
problem first. Suppose we want to find the excess over the hyperplz;.ne ¥={z:q4-z=c} by %

the d-dimensional random walk S, in the norm direction 4, where ~ is a d-dimensional vector

satisfying E(y-S1)=v-u>0.

A 35 W B

The problem above can be converted into a one-dimensional problem. In fact the first
time S, crosses X is the same as the first time the one-dimensional random walk v S, crosses
the constant level e. Moreover the excess in the normal direction by S, is exactly (v ST, —¢)

where T, = inf{n, 7 Sp > ¢}.

.._...<.
¥ g“‘ [N

The next theorem relates the excess over the linear boundary of a conditional random

walk to that of an independent random walk.

B

Theorem 2. “
"

lxm Pf("’)h -Str.—¢c<z}= P(o,a,‘,’)) {v - Sr.—c<z}. _'3

]

Moreover the equality above still holds when ¢ is allowed to depend on m in such a way that 5
0(m!/2=7) = ¢ — co where a is any positive number less than 1/2. _;
Proof: Clearly Pe(",',){T, < m=2)/2} 1 as m — 0. So for any given ¢ > 0 we can find m; g
such that Ym > m; the inequality below holds: ::
:

Py St e Sz T S m=)/) - Py §p —c <z}l <. ]

.]‘

B
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Chapter 4

Nonlinear Renewal Theory for Conditional Random
Walks

Here we study the asymptotic distribution of excess over the boundary by a conditional
random walk. The notation used here is consistent with that of Chapters 1, 2, and 3, except
where stated otherwise. We begin with the following lemma which shows that as the time
of conditioning becomes remote a conditional random ‘walk behaves like an independent one
locally. Let £ = £ m~*, $2)(z) = supgnrolt'z — $(8)], $'7(8) = $[(0,8%)]. For the
sake of simplicity write 0((,2) for 0(2)(6((,2)).

Lemma 1. If n = o(m!/?) then

(m)

lim ¢

m—co dP,

(,))(Sl,---,S,,)= 1 as. P
(0,6¢

087y

Proof:
4Pl : 2 (el 2
€ (S1y2Sn) = [(51) - F(S2 = 81) -+~ F(Sn = Sac) £ (6@ — 51y @) (£02)y)

dP(o‘.‘(,z),

. [fw 0(1)- (Sl) . f(O 0(”)(32 - Sl) .. 'f(O,O‘()”)(S" - Sn—l)]_l
(2) (€@ - s@) .17 (2)(6(2))  exp{S? . 0‘(,2) _ "ﬁ’(z)(l’((,z))}]"l.

By Proposition 1 of Chapter 2 the quantity above tends to
[m/(m — n)| /2 @) () /2|3 @[(£® - 5B/ (m — n))|=2/2
-exp{~(m = n)¢@[(£? ~ 5)/(m - n)] (4.1)
- explm @ (£)] - exp{- S - 65 + ny? (o)},

Now

$P((€@ - 83)/(m ~ n)} = $O (D) +[(n€l? - SD)/(m —n)]- V4O () +o(m™Y) aus.

..............................................
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22 Chapter {: Nonlinear Renewal Theory for Conditional Random Walks

Observe that
Ve () = viel? - o - p@ ()]

=80 + (68 = Vi 9D (6{)) - 7 (68" = )
=6

where J (032) — E((,z) ) is the Jacobian matrix of the mapping 0((,2) — 32’. So

(m = a)$@[(€D) = 5B)/m - n] = (m - n)$@ (&) + (n& ~ 52107 +0(1) .
= mg@(£) - n[eP6 - p@ (0] +0(1) 2.
Substituting the equation above into (4.1) completes the proof.
Before we investigate the nonlinear boundary crossing problem let us consider the linear

problem first. Suppose we want to find the excess over the hyperplane ¥ = {z: v -z = ¢} by

the d-dimensional random walk S, in the norm direction 7, where 4 is a d-dimensional vector

satisfying E(y-S;)=~v:-p>0.

The problem above can be converted into a one-dimensional problem. In fact the first
time S, crosses X is the same as the first time the one-dimensional random walk «v-S,, crosses
the constant level ¢. Moreover the excess in the normal direction by S, is exactly (v-Sr. —¢)

where T, = inf{n, 7S, > ¢}.

The next theorem relates the excess over the linear boundary of a conditional random

walk to that of an independent random walk.
Theorem 2.
Jim PNy -S1,— e Sz} = Py (v 51~ c S 7).

Moreover the equality above still holds when ¢ is allowed to depend on m in such a way that

0(m!/2=®) = ¢ — co where a is any positive number less than 1/2.

Proof: Clearly I’e(:',',){fl'e < ml1-2)/2} 1 as m — 00. So for any given ¢ > 0 we can find m,

such that Ym > m; the inequality below holds:

Pl 51 - ¢ S 2 T S ml=2/?) - P4 - 87, —c < 3}l <c.
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Chapter 4

Nonlinear Renewal Theory for Conditional Random
Walks

Here we study the asymptotic distribution of excess over the boundary by a conditional
random walk. The notation used here is consistent with that of Chapters 1, 2, and 3, except
where stated otherwise. We begin with the following lemma which shows that as the time
of conditioning becomes remote a conditional random walk behaves like an independent one
locally. Let &2 = £ . m=1, $(2)(z) = supya),[t'z — ¥(8)], ¥ (8) = $[(0,6)]. For the
sake of simplicity write 0((,2) for 0(2)(8‘(,2)).

Lemma 1. If n = o(m!/2) then

orf)
"}y‘n&dpo'(”)(d“ : ;Sn)=l a.8. P(o'(’))-

Proof:
apim)
— & (S1,-++,850) = [£(81) - £(S2 = 81) -+ [(Sn = Sa=1) S (€@ — 5B/ 12 (£2)))]

4P, ol
000 (S1) - £ig g (S2 = 51) -+ fig g0 (Sn = Sn-1)]™!
= fOL. (6@ - 52) . [7D(£D) - exp{5) - 6§ — gD (8)}] .
By Proposition 1 of Chapter 2 the quantity above tends to
[m/(m — n)]%/2 L@ (elD)/21g D62 = 5B)/(m — n)]|~/2
-exp{~(m — n)¢D[(£® - 5)/(m - n)] (4.1)
- exp[mé @ (£{)] - exp{— S - 8§ + np () (8}

Now

$D[(£D - 5N/ (m - n)) = $PV () + [(nel?) = 5P)/(m = n)}- V4P (£Z)) 4 o(m™1) a.s.
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20 Chapter 8: The Composite Null Hypothesss Case

exist, we have r/m — t¢, with Pé(";)) prabability 1, and limy,—co Pg:,) {r<m-me}=1

Combining all the results above, we find that (3.4) is approximated by

£ @)
¥ (r:; o

where Ry = (m - r)A (515!) — @ is the excess over the boundary at the stopping time r.

-1/2
E{o{e™"} exp{-mla0 ~ A(&o)]}, (3:5)

(1 - te,) /2B (&)1 -

M—-r

To finish the approximation we need to identify E’gm{e'a"'}, the excess over the boundary

by a conditional random walk. It secms to me that this topic has not been treated in the

literature before. In the next chapter we shall study this topic and give some applications.
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where ES’IZ is the expectation corresponding to the conditional probability Pt(::’) .
By Proposition 1 of Chapter 2 we have
fm—r(f - sf) ~ [Zx(m - r)]—(,/z w(2) f(z) - f(z) $ (E =S,
S (€@ ~ 57 S\ mer m=r
- (2) — c?
exp{—(m—r) ¢,(€_S_')_¢o _f___S_,_
m-—r m-r . (3.2)
1/2 -1/2
g (€2 - s = s
m-r m-r

it (57)

1/2 -1/2

= [2x(m = r)] /2

g) ¢(2)
JAES) o amm) (o) 5 - (B E{P 2 exp{ml 60— do(ef™ ) (33)
= (2rm) (B2 - (B (67| 2emrted)
where $)(u) is the covariance matrix of Sl(z) under P.
Substituting (3.2), (3.3) into (3.1) we have
/2 @ - g\ ) ¢ 5\ |
5 (725) ]z:“’ (i—";_—— (Bl 1B g (£2)
£ 5 -
exp (6 —(m—r)A g | KR4 < m - myq § - exp[~m(ao — A(&))] (3.4)
It is not hard to show that with high probability §? ~ r. f‘(,z) under Pg’,',), 80
2 g ) _,. e
@(£2=5") L go (£ 274 ) _ g
0 (£228) g (227) g
Similarly, )
1
- @y. g (E=5 0 (2)
s~ rl0.6)-3 (55) -8 (—1_,“, s )
pasumes 7/m — tg, under Pé;’;,) '
For those §o such that S.

te, =inf {t: - - _Et(ﬁ. ) _
(e =inf{t:0<t<1~mg/m, (1-¢t)A 1o & | =00 N
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18 Chapter 8: The Composite Null Hypothesis Case

Define

— {m) fm(€ A0 )
Q(4) “_/PA° AV =g = f"’(f"’) dAg)

where A% = (A1) g) where A!) € R, 0 is the zero vector in R%, dy +d; = d, £ is the

density for S, ( ) under Py where

Sp = (S, 5), sWeph, 5@ epRh

Now the likelihood ratio X
4Q o o [Pk o Iml€=20) ) _ Sml€D(sP) ]
ap o '/ dP.},";’( S ) T o) fu(sa)

Observe that \

Im(€=2%) _ —30) @
ey = In(€=21€%)

is the conditional density of S, given S( ),

The Q distribution of S, n = m,m — 1,--- running backward from S,, = m§ is the
same as the conditional Py distribution of m§y — S, n = 0,1, - running forward and tied
down at S("') = mf‘(,z). Under the reverse time scale T* is a stopping time so the Wald

likelihood ratio identity gives

(m)
(IQ (ST‘v""sln); T 2 mo

P™(T < m) = P{™(T* 2 mo) = Eq {

fro(81) SR(ED) o
F2(sBy fal6) '

Let
. Sn .

r=mf{ :(m - n)A( _n)>a,n<m mo} )

It is easy to see that the distribution of T'* under Q is the same as the distribution of m ~ r :

under P(:',',) (A) = Py(A| Sm @ = = £(2)), So the expectation above can be replaced by

) | Smer(€=8)  f2(6@)
Ee“*{ @ (¢)_st)y) Sm(6) S ST (3.1
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Chapter 3

The Composite Null Hypothesis Case

In this chapter we consider the more difficult problem of composite hypotheses. The null

hypotheses considered in this chapter are of the form
Ho:0€ 8 ={0:6") =g},

where 0 = (§),0) 00) = (0y,---,04,) € R, 6@ = (04,41, ,84), dy + dz = d. So 6%
plays the role of nuisance parameter here. The stopping rule corresponding to this case is
given by

T = inf{n > my; nA(Sa/n) > a} where A(z) = ¢(z) - do(z).

In the case of the composite null hypothesis the most tricky part of both the forward and
backward method is to find a measure Q such that its likeihood ratio with respect to the prob-
ability measure under the null hypothesis is a simple function of the stopping rule (asymp-
totically). For the forward method, the @ measure is taken to be the mixture of Py over
a submanifold N of the parameter space © e.g. @ = [y Pedon(0)/ [ don(8), where don(0)
is the differential element of the manifold N, see Lalley (1983) for details. For the back-
ward method, which we will develop here, Q is defined by randomizing the starting point
of the sufficieat proccss S, according to a conditional distribution. To be more precise, de-
fine T* = sup{n, n[$(Sn/n) — ¢o(Sn/n)] > a} and P{%(4) = P(A | So = A, Sm = §),
Pe(")(A) = P(A| Sm = £). It is easy to see that

eV fn(Sn = \)m(€)
—AL (5., = M\on m
P R X AT

et

e T T e T A T T T BT T
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18  Chapter 2: The Sirple Null Hypothesis Case

E—: Nemark 1. The change of variable (2.12) amounts to saying the backward and forward
. process hit the boundary at the same time. This interpretation helps us find the appropriate
change of variable in more complicated situations. See Chapter 5 for an example of the

oy composite null hypothesis case.

~ Remark 2. The relation that the increment of forward and backwaid processes have the

simple likelihood ratio e¥ is not accidental. See Chapter 5 for another example.

. Remark 3. Theorem 2 has the following merits as far as numerical computation is concerned.
::Z-‘j It relates the excess over the boundary of the forward process and the backward process in

o such an elegant way that no matter what method you use you only need one progiam to

compute the excess over the boundary.

Remark 4. Theorem 2 also implies that if we ignore the excess over the boundary, in general

the forward and backward methods will not give the same approximation.
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¢ Proof: By (2.15)
= lim E{exp[-(U,, - o)} = (BU,, )1 - E(e™7+)), (2.16)
'-::«{ where 7 is the first time the corresponding random walk is positive. When there is possibility
'::j';': of confusion, we also write r_‘,{ to indicate which random walk we refer to. By Wald’s lemma

- E(U,,)=py-Ef¥. (2.17)

By the duality lemma
Er¥Y = P{+¥ = w0}~L. (2.18)
where r¥ is the first time the corresponding random walk is nonnegative. Wald’s likelihood
‘_ ratio identity gives
% P(r7V < o) = E(e~U"+). (2.19)
Substituting (2.17)~(2.19) into (2.16) we have

oo Jlim E{exp|~(Us, - a)}} = P{r] = 00} P{rz" = o0} /ny. (2.20)
- Arguing exactly the same way we obtain

) .
o> Jim E{exp(~(V;, - a)l} = P{r;" = 00} P{s¥ = 0}/z. (2.21)
",:: By obvious scale property
b P{r;¥ = 00} = P{r¥ = o0} (2.22)
«“‘;-' _
:::: P{r7V = o0} = P{r¥ = c0}. (2.23)

Dividing (2.20) by (2.21), using (2.22) and (2.23), we get the desired result. This completes
the proof of Theorem 2.

- L) L
2 " v .' ) \

It is routine to check that

v b W0, 00)
N By 0¢'(0) - $(9) é(v'(9))
[

This proves (2.14). Several remarks are called for.
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14  Chagter 2: The Simple Null Hypothesis Case
Bv a nonlinear renewal theorem of Lai and Siegmund (1977)

Jim E{expl=T4(52/T) - o)} = [BU )™ [~ PO, > 2)ds,

where Y = ¢(¢'(9)) + (X1 — ¢'(0))8 = 0X, — ¢(0), X, is distributed according to Py and
Un =20, Y; Y;iid. and each ¥; has the same distribution as Y. Integrating by parts gives

(EU,,)* /o " et P{U,, > z}dz = (BU,,)~'[1 - E(c""+)]. (2.15)

The increment Z of the random walk V,, in Theorem 1 has the same distribution as
vxfo(tforo) ° (I,Xg) = (?-(1 t)¢ ( ) '(‘( ,0)? az(l t)¢ (60 ) l(‘(o'o))
) _ §o §o fo ) _ §o
(I’Xl) [¢( )+1”t€o¢(l”t€o) Xl¢(l—t"€0)]
= —[¢(4'(9)) + ¥'(0)¢'(¥'(0)) — X, 4'(¥'(9))] by (2.11)
=—(0X; - ﬁ(ﬂ))

where we have used the identities ¢(¢'(0)) = 0¢'(8) — ¥(9) and ¢'(¢'(#)) = ¢ in the third

equation above.

The likelizcod ratio of Y with respect to —Z is equal to

fr(y) _ ep[0(39) - v(0)] o (259
Fz(y) fo(2E0)

The following theorem is all we need to complete the program.

Theorem 2. Let Y;,Y>,--- and Z;,23,--- be two sequénces of independent identically dis-
tributed random variables. Also let U, = 301, Y5, V,, = 10, Z;. If the likelihood ratio of Y;

with respect to ~Z; is equal to ¢ then

limg.co E{exp[-U;, ~ a)l} _ pz
limg—oo E{exp(~(Vs, - a)]}  pr

where 7, is the first time the corresponding random walk exceeds a, ux = EX; > 0, py =
EY: > 0.

'.fd't(q

- N
R 1 p SRR . . LR
S A e e
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Chapter 2: The Simple Null Hypothesis Case 13

Expanding the likelihood ratio ;“% about 4 and using Laplace’s method we have

-’f—g(x,, e, Xn)=Lp= /exp[l,.(d) — £,(0)](2x)"*/2d0

(]
~ explta(F) = £a(0)] expla(6)(0 - Ba)?/2)(27)"* a0 (28)
~ exp[$(Sn/n))/1tn(8n) /2.

Substitute (2.3), (2.4), (2.6)-(2.8) into (2.2). We have

Po{mo <t < m, ¢(Sm/m) £ ¢/m}

1/2
~ / [_I—(i)— 4 E,[e—(é(sr/'f)—a)]dg(z,r)—xlz .al/2,~0 (2.9)
{7(0.0)<no $(Few'(9))<c/m} LI (6,0) ‘
By Corollary 1 the backward method gives us
Po{mo < T < m, ¢(Sm/m) < ¢/m} (2.10)

-1/
~ (m[2x)!/2ce / l 2(1 ~te,) " 2u_(£o)déo.

{#(&o)<e/m, ‘(60/1_'(0)5"0}

P

To show (2.9) agrees with (2.10), let us make the change of variable
§o

T 9'(0). (2.11)
By (2.1) and (2.5) we have
f=1-tg (2.12)
Now
dp_d m ___-m(0)¢"(9)
do’ ~ d8J(6,0)  (09'(0) - $(9))*
% = %z,w(o) = ¢"(0)Es + 1_0'(0);5:', = ¢"(0)ts [‘1 - f(ﬁ,((—z)))] . (2.13)

Substitute (2.11), (2.12), (2.13) into (2.10). We have
Po{mo < T < m, ¢(Sm/m) < ¢c/m}

~ (a/2:)"’2e"°/

$(Lew’(9))<c/m, J(#,0)<no}

e\ 09'(0)
(m,o)) v-(E¥'(0)) l‘ ~ o]

To show (2.9) agrees with (2.10) it is sufficient to prove

8¢'(6)
¢(¢'(6))

v-(t¥'(9)) Il -

St AN il et

= lim Ey{exp[-(T¢(Sr/T) - a)l}. (2.14)

o
[
4
¥

----------
...............
............
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12  Chapter 2: The Simple Null Hypothesis Case

Eq, {10g(fo,/ 1)} = (61 = 92)1(81) = ($(01) — $(82)), also let
10) = B {~ 55102 o} = ¥°(0) = Vare(x,)
be the Fisher information. Now define Q(A) = [ Po(A4)(27)"*/2d0. Then
Py{mo <t < m, $(Sn/m) < ¢/m} = Eo{Po|¢(Sm/m) < ¢/m | Er)s mo < T < m}

where &7 is tke o-field generated by all events A satisfying AN[T =n] € F(X;, -, Xn) (sce
Chung ( )). Applying Wald’s likclihood ratio identity, the expectation above is equal to

B {4251+, St R{#(Smfm) < cfm | Er), mo< T < m]}

) (2.2)
= /Eo {%(S;,-*-,ST)PO[MS,,./m) Se/m|ér); mo<T< m} dé.
It is easy to see that Py{limpn—oo $(Sn/n) = J(8,0)} = 1, 50
P.{.li_n;o a”IT ={J(6,0)" ]} = 1. - (2.3)

If mg,m and a are related by m™'a = n; < m;'a = ng then it follows that
1 ifng < J(0,0) <n
Po{f‘no <T< m} - . (2.4)
0 if J(6,0) & [n1,mo).
In this case we have
Po{ lim m~'T = &} =1

where

te =in/J(8,0). (2.5)

If we impose further regularity conditions such that limy—.c n~14,(8,) — I(8) bolds then
Py{ lim a~![-r(r)) = 1{0)/ 3(6,0)} = 1. (2.:6)

Taylor’s expansion gives ¢(Sm/m) = ¢(TX7/m)+ L(Sm - S7)¢'(TXr/m)+0,(1) under

Py, 80 as m — o0,

B{6(Smm) < cfm | £5) — {1 if $(fa¥'(9)) <c/m @

0 if $(fe¥'(8)) 2 c/m.

Laierane SiiE ol B o s i ahd
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Chapter 2: The Simple Null Hypothesis Case 11

R,, tends to the same distribution as the excess over the boundary by the random walk
VKe(te,,0) - S, over a distant constant boundary, where §, = (1,Sn). Now the ordinary
renewal thcorem can be used to identify this asymptotic distribution. This completes the

proof of

Theorem 1. Let § = §m, m¢(&) < a. If a,m tend to co in such a way that am™! — g,

and if t¢, defined by (2.1) satisfies 0 < tg, < 1 ~mo/m then the following asymptotic relation

kolds
§o
$ (1 - tfo)

where v_(&) = [E(V,,)]™ [;° e *P{V;, > z}dz, V, = 10, Z; Z; are i.i.d. and have the
same distribution as VK¢, (te,,0)(1, X1), X, is distributed according to Fp, and ry = inf{n >
0, V, > 0}

-1/2

P{™(T < m) ~ (1 - tg) 2[5 (&)]'/? - exp[—m(ao ~ ¢(£o))lv-(£o)

Corollary 1.
Po{T < m, m¢(Sm/m) < ¢}
~ (mf2m)¥? [ (1 - teg) ™ 2u_(€o)dEo -

{#(&0)Seo,tgy <1—mo/m)

where ¢ = em™1.

Corollary 2.
PO{T <m, m¢(sm/m) < c}

~ (m/27)%% exp{~m|ao — ¥(0)]} (1 = te,) Y 2u_ (&)™ C0dgy”
{#(&0)Seo0<to<1-mo/m})

The proofs of Corcllary 1 and 2 are omitted here. In principle it follows from integrating
the result of Theorem 1. Corollary 2 needs further simplification. The actual procedure
may dcpend on the probability model under consideration, but the arguments in Chapter §

may provide a clue. Next we’ll derive Corollary 1 in the one parameter exponential family

using the forward method, then show that the forward and backward methods give the same
result. Let J(6;,0;) be the Kullback-Leibler distance between fy, and fy, i.e. J(8,,0;) =
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By Wald’s likelihood ratio identity

P){1- S, - c S 7 T. s mU=o)/2)

(m)
=E —&—S,---, cap); 7-Sp. —e<z, T. <mt-o)/2}
(08”) {d p(o'o;,))( 1 mi-a)n); 1- 81, —¢<z, Te<m

Applying Lemma 1 and Scheflé’s theorem (see e.g. page 184, Billingsley (1979)), the expec-
tation above can be made arbitrarily close to P(é '(,,){7 -8r.—¢<z2, T < m("")/"'} which
Wo

in turn can be approximated by P(o ,(a)){'y +St, — ¢ < z} when m is sufficiently large. That is
o

(P (1 S1, = ¢ S 2} = Py o) (1- 51, = ¢ S 2}
< IOy 51~ ¢ S 2} = Py Sz, = c S 2, T < mU=)/2)]
+ 1PN 51— < 5 TSmO — By (3-S5, - e S 2, T S mU=l2)
+ |P(o,0,‘,”){'7 -Sp.—e<2, T. < ,,.,‘(l—a)/z} - p(w‘(’,)){., .St — ¢ < 2}
< 3¢

for m sufficiently large. This completes the proof.

Although the theorem above gives the uympéotic distribution of excess over a local
linear boundary, the problems of interest require that ¢ = 0(m). For this case a “restarting
argument” is needed. The restarting argument can also be used to determine the asymptotic
joint distribution of stopping time and excess over the boundary. Before we get into this
let us find the asymptotic marginal distribution of the stopping time first. In Lemma 4 and
Theorem § below the setting are the same as Theorem 2 except that ¢ = com for some ¢p > 0.

We will need

Proposition 8 (Borisov, 1978): Let ¥; ¢ = 1,2,--- be a sequence of i.i.d. random variables

such that EY; = 0 Var ¥; = 1 and the moment generating function E(c¥1) exist in a

neighborhood of zero. Also let V,, = 350, Y;, Wy(t) be the random polygonal curve with
vertices at (k/n, V,,/\/n), that is '

k+1

L
n n

Wa(t) = % +vn (t - 5) Yiqr, if

<tg

Then the distribution of Wa(t) conditioned on Wx(1) = O converges to the measure generated
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24  Chapter {: Nonlinear Renewal Theory for Conditional Random Walks

by the Brownian bridge W%(t) = W(t) — tW (1) where W (t) denotes the standard Wiener

process.

Lemma 4.
T. - c/u (2)

V(l m “’v&‘;”)c( ))"")

where y.-(, =4-(0, (2)), 03 = Varg(q)(7- 51) is the variance of - S; under Py(,). $(z) is the

<z} =4%(2)

distribution function of standard normal distribution.

Proof: First observe that it is sufficient to prove

T —elmy <z} = &(z)

{ V- 2)edus®

m)

- where gy = 7 - §p. Because P((,, may be obtained from Pé"') by integrating out £(), and by

Proposition 1 of Chapter 2 under P, fgl) = £(1) /m is degenerated at zero this is true because

in Chapter . we have assumed that x(0) = 0. Now

BT —c I ot e AL 7-8t,—¢

‘/(' ) ohens’ —\/(‘“ ) oo’ ‘/1""’ )her

4 - St, — ¢ is the excess over the bounuary at the stopping time T,. Since

(1-5r,— > m} (TR - 06+ QP U{_ max v X0 > m)

where t = ¢/u..

(m) _ 4 < pi™ - (m) ‘
P™{7-55, —¢>m) < P™T. ¢ [(1- 6)t, (1 + 6)t)} + P . WL A R

By Proposition 3 limm—oo Pe‘"'){Te ¢ [(1~6)t,(1+6)t]} — 0 and by Lemma 8 below

("l) 9 < (m) .
{(1 6)t<n<(1+m h an >m } 25“’ {|‘7 Xxl >m ) -0 as m — o0.

So 7 - 87, — ¢ = 0p(m*) for Ve > 0. This shows that

BT —¢

\/(“ ) odens’

-\-‘_"l‘" il A A
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b has the same asymptotic distribution as ,
L
% pyTe =7 S1,
': V (l - 70&) TGh
N Let Wa = 7 Sn — (7 £0)n/m. Then .
v, h
- Pe(m) #ole =7 r, <z)=P Wr. <z|Wmn=0 y
\/(1 - ‘—j':) U%ocp;‘ \/(l - f‘{: agocp;‘ .
= Notice that
::'\' - 1/2 - )i — 1/2 .‘
{|Wr, - Wi |> em'2} c {T. ¢ [(1 - 8)t,(1+6)i]}U {(1-6)122‘(1“)2"“’" Wil > em'/?}
| :
- and A
- - 1/2 - € 12 y
S {(1-6)1?1?2(1%)1 |Wn — Wi| > em?/?} C {(x_‘)‘réxrg(l”)‘ [Wa — Waos)l > 3™ }. .
So - L
P{Wr, = Wil > em/? | e = 0} € P{Te ¢ [(1- 8)t, (1)t] | Wen = 0} ;
~ € K
LY - - l/2 - >
% P B eV~ Wil > gm | W = 0} ;
K] r
t We have shown P{Tc ¢ [(1 - 6)t,(1+6)¢t] | Wi = 0} — 0 as m — co. By Proposition 3 P
€ € .
- P Wa - Wa syl > zm'/? | Wy =0} = P wo(e)| > - .
:_: {1225 iy = Wil > gm' | Wn = 0} {oslss;:gw;, Iwe(e)l > 3}
:‘- which tends to zero as § — 0.
This shows that "
Wy, Wn-Wi, W ]
vmo ym O m '
o has the same asymptotic distribution as %, but by Proposition 3 gf‘- has asymptotic dis- 3
» . 2 .
' tribution N (0, of (1 - ;‘;':) f"l) This proves E
.. - N
"._' Jim P‘("') Te—clm <z} =®(z). N
V(- 2) ot :
L
. This completes the proof. N
) kY
: :
| N

)
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Theorem §&.

T — o/

_ e 2 (2)y-s
(= ) hte?
= &(z) }_i}go P(o',‘(’n)h 8r.-e <y}

Jim e

<z,9:-8r,—-c<y

Proof: Define T' = inf{n,7 - Sp > ¢ — m'/3}. Then

T-T >em?®} ¢ S, <e}c - Sp — 1S+ < m1/3).
{ em }l{os"gyzmm'r n <} {rS”;nT,a:mm'r n = 157 < m'/%}

So

(m)em _ v 2/5 (m)e . S /s
Pf(,,{T T >em }SP‘(’){rsngva:ml/“,S" 7 S0 < mt/3)

= Pf‘:’;)) {0<rﬂ?:’/67 *Sn < m‘,a} < PG(:)){" ) S[""’/'l < ml/s}

dP('")
=E _L’)_..(g ... 8 )78 < ml/3
= 0,0(1)(6‘()’))) dp(o '(,)) 1 ] l“"’/’f e {‘m’/q <
o

- "!j_xpoo Po,a(’)(g‘(”>)){’1 * Siemare) S m‘/’}

by Lemma 1 and Sheffé’s theorem.

It is clear that P(o ‘m){'y * Sieme) S m!/3} — 0 as m — oo by the strong law of large
o

numbers.

The argument above shows that |T' — 7| = op(m!/?) which implies

—aln®
n!l—xonxpé('::)) d C/p" <z ST: —e<y
\/(l - f(}?) o2me(n)))
1t _ 1, (2)
= lim P™ T —c/uy <z 8 -c¢<y

u:—co &
\/(l - ;"’) 0:(”c(“§,2))-3
v [ ]

Now the idea is to restart the process from Syv. Define T" = inf{n,v - Sp47v > ¢} and
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- Ry = {(v1,--,va);T'(1 = 6)§i/m S v S T'(1+ 6)§i/m, s =1,---,d} where £ = (£1,- -, £4),
%
o —c/u®?
N A, = u—c/es <z
\/(‘ } %) o3y e(i)-
o By &
Then the probability above equals
: Jim_ /A P (18pw = (¢ = 71 57) < Y} PUNT € du, 52 € dv)
’ = "!1_13;“ . Pe(:',';:_"){qsrn —(e—=v:8p)< V}PE(::)) {T’ € du, Sg) € dv}
- since limm—co P{™ {Sp € Rs} = 1.
' Now by Theorem 2
|P€(:',','_",) {v-Spe—(c—-15p) <y} - lim B o {7-Sr. e <y} <e
on the set A, N Ry for § sufficiently small. This implies if we first let m — oo and then § — 0.
Then we have
= ol al?
) Jim P2 el <27:$n-c<y
I~ . - fa_) 2 (2)y-s
- \/(l . ﬁ‘v”) Tgneler’)
- = Jim, P gy {757, = ¢ <) Jim PEEAL)
' = &(z) - lim P(o.c,‘,”){" -8, —e<y}
£ This completes the proof.
o The next theorem is the main result of this chapter. It is also the result we need to
'. complete the approximation in the previous section. Let T, = inf{n > mqo, mH(S,/m) > 0}.
N - From here to the end of the proof of Theorem 6 S, will be defined as S, = 3%, X; where X; =
.jl'_: (1, X;). X;4=1,2,---is ani.i.d. d-dimensional random vector sequence. The distribution of
E’_:L X; can be imbedded in a d-parameter exponential family. The reason for defining S, in this
= way is to include a more general stopping rule which is needed in applications. Before stating
-'Zj: the theorem we list some assumptions which are easy to check when applying the theorem to
N,
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a particular example, but it is tedious to impose conditions on the function H which imply

these assumptions.
(I) 3to > 0 such that limm—co Pg(:',')) {|Zm —to] >} =0Ve>o0.

(II) H is continuous in a cone C containing the line of drift (1, u(0, 0,‘,2))).

(I1I) H has continuous first partial in a neighborhood of tops and 4-p # 0 where v = VH(tou).
Let N = {(z1, "+, 2¢41) : H(z,, +++,2441) < 0}. If .assumptions (II) and (III) are

true, then by the implicit function theorem there exists a continuously diflerentiable func-

tion f(zy,---,2q) satisfying H(z;, -+, 24, 9(Z1,*,24)) = 0 V(24,--, 24) belongs to some

neighborhood O of (top;,: -+, topd) and g(tops, -, topd) = Ltolsd+s-

Let 7 = {(z1,-**,Zd41) : Zd41 = 9(21," -+, 24)} be a d-dimensional surface which is well

defined on O and extend in some smooth way to RY.
(IV) Boundary (N)NC=CN7F.
Now we are ready to state

Theorem 6. ¥f assumptions (I)-(IV) hold then
Jim_ P (mB(Sr./m) < 2} = Jim P yon) (757, = ¢ < 2},

Before we go any further, let me make some remarks.
Remark 1: The pml;lem is invariant under rotation so we may choose the coordinate system
such that u = (0,0,---,0, lul).
Ren:ark 2: The limit on the right hand side of the equation above can be determined by the

ordinary renewal theorem.

Although the proof of Theorem 3 is very complicated and technical, the basic strategy
is not difficult to explain.

It will be shown that to determine limp—qo PE(:’) {mH(Sr,/m) < z} is equivalent to
finding the asymptotic distribution of excess over the hypersurface m7 by the conditional
random walk. In Lemma 4 below we shall exhibit a surface m7(*) which is “near® m#. The

idea is to condition on the position of the random walk at the first time it crozses m#*) then

B aiah At et
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restart the random walk from there. Lemmas 5 and 6 below amount to showing that the
restarted random walk will cross m7 in a time of magnitude o{m'/2). Now we can simplify
the problem in two directions. First, by Lemma 1 within the time of magnitude o(m*/?)
the conditional random walk behaves like an independent one. Secondly, since the restarted
random walk will cross m7 within time o(m!/2) the only important part of m¥ is a set of
diameters o(m?/?), within which m7 behaves like a hyperplane. (To every man on the earth,
the earth is “fat”). Finally, an argument like the proof of Theorem 2 can be used to finish
the proof. The proof of Theorem 3 is preceded by three lemmas.

Lemma 7. Let m7 &) = m7 — ku/||p|| where k is a positive number which may depend on
m. There exist a; > a; > 0 such that a3k > d(m7 NC, mFE N C) > a,k.
Proof: Let M = sup,¢o ||Vg(2)]l, ¢ = (2M)~). (If M = 0 then g is constant over 0, and
Lemma 1 holds trivially. In fact d(m¥7 NC, m7¥) N ¢ = k). Now
(k) 2s ) — 2
CdmFnC, mFENC)? 2 inf (Im(z-v) =~ ke/lll’)

= 1 2 - 2 - - 2
"'xgyfnc(m Iz - ylI* ~ 2mk{z -y, u/liul)) + £°).

Note that

m?|z - y||* - 2mk(z -y, p/|lpl) + £
= m?[[|(21,- -, 24) = (y1, -, v)* + l9(21, -+, 2d) — 9(v1, -, wa) Y] 42)
- 2mklg(z1,- -+, 2d) = glv1, -~ va)] + £
=m?||(21,-+,28) = (41, va)I* + [mlg(z1, -+ 2d) = 9w, -+~ wa)) = A

where the first equality follows from (u/|ln|]) - z = g(=z;, - -, 24). Let
e = inf{[|m(z ~ v) - kp/lpll; z.v€ FNC, (21, - 2d) = (1, va)ll > ek/m}
& = inf{[|m(z - y) - ku/||plll; z.v € FOC, W21, 24) = (01, va)|| < ek/m}.
By (4.2) €1 2 €2k%. By the mean value theorem
l9(z1,--+12d) = glyas -~ wa)|l € Ml(z1,- -, 24) = (41, -, ¥a)l}

20 €3 > (k= eMEk)? > E?/4, clearly d(m7 NC, mFMINC) 2 ¢, Aey. Also k 2 d(m7 N
C, m7®) N C) by the definition of m 7). This completes the proof of Lemma 1.
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Let z; = (zgl), e ,z{‘)), lzille = :-’_.:, |z£"’l. The following lemma is true.
Lemma 8. limp— mPé'"’{llX;ll. >m‘}=0Ve>O0.
Proof: By sufficiency the conditional probability Pc('") is independent ‘of the parameter 4, so

we may take 0 =, EgX), = §

mPém){"Xlll. >m‘}=m 1(2) - fm—1(£ — 2)] fm(€)dz. (4.3)

ll=lle>me

By assumption sup, |f,(z)] £ B for all n > ny, and proposition 1

Tol£) ~ (27m) V2| (&)~ Y2 exp{~nd(£&)}.

By (4.3) ¢(&) = 0, so for m sufficiently large

Fm(£) 2 (1/2)(20m) ™ 218 (60)| /2.
Now

/ £(2) - fmes(€ = 2)/ fun(€)d < 2B(27m? | (€0)])/? / f(2)dz
{l#]le>m* [affe>me

< 2B(2xm[$(&))) /22 E(ANXl)y wa > 0.

Since the moment generating function of z; exists in a neighborhood of zero, E(eMX1lle) < oo

for A sufficiently small.

It is clear that as m — oo
2B(2xm|$(€)))"/ 273 . B(MFille) S 0.

This completes the proof.

Define

T® =inf{n > mq : Sp crosses m7®)}.

Lemma 9. For any given § > 0 there exists m; such that for all m > m; the following

inequality holds

Pg’,’,’{a,.m‘/a > d(sr(,,,.-,.,,mfn C)2asm*}21-5

where a4 > as > 0 are independent of m and §.

2.

-

il el e
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Proof: Since with P((,,) probability close to one the conditional random walk S, stays in the

cone C for n sufficiently large, and we have

5
e‘;';,’{nx e lle + il 2 d(S i, mFNC)} 21~ 5 (4.4)

Pé:’;,){d(sr(mn/a,,mf Ne) = dm7™"nc,m7nc) - nfrr(,,.,.,u.} >1- g (4.5)
Clearly
» o 6
PEHIE i lle > m} = PEHIX grmlle > me, T < pm} < £

for some constant A > 0 and m large enough and

1/3

Pe(:';)){“).cr(ml/')"o > m, Tm < ﬂm}
< P pax 1. > m) € mBLEHIKL > m).

The last quantity above tends to zero by Lemma 5. This implies

Qn

Py X ralls > m} < 3

[

for m sufficiently large. Choose € < % In view of (4.4) and (4.5), the proof is completed.
Now we are ready to provAe Theorem 3.

Proof of Theorem 3: Let T, = inf{n > m,, S, cross m7}. Since the conditional random
walk S, will stay in the cone C with high probability Vn > mg, by assumption (IV) T, = T)»
with high probability. By Lemma 6 the conditional random walk starts at ST'(:'.,., will cross
m7 in a time that is Op(m}/*). Now the idea is to compare m7 with its tangent plant at

mtop in a neighborhood with diameter that is 0(m?/%) via a Taylor expansion
mf (—"- = mf(0)+ VI(O) - h+ h' - VIS sﬁ) h
m m m

where ||h]] = 0(m!/®), 0 < § < 1, so the conditional random walk starting at ST(,,,./.) crosses

m7 as if it crossing a hyperplane HP which is 0(m!/3) away,

HP={z; z2-71=cm} c—m=0(m‘/’).

e . ._. ..-...:' A :' .:. .>'. . _..‘. ..‘.-._'~ R - ..1.."':,’-'..}.._'; _____ .‘: e ‘:._":-_':\‘,:-_‘ RO .', A _-. .». - _.- _._ _.'.‘.‘ ‘.\....‘..- 'E\'.\ -, _,-;;_\

.......................................
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Sn crosses HP when S, - 7 crosses the constant level Cp. The excess of interest turns
out to be the excess in the normal direction, in the case of a hyperplane it equals 7-S1,  —cm.
Let

A; = {Excess over m7 in 4= VH(typ) direction < z}.
Then (by the arguments above)

lim P&,,’{A;}: lim Eg’;f{Pe‘:’,',’[Al|£TLm,,,)]}

T m—co €

m - mi/%)
= lim E! ){Pf((",', " ,[“I *S1.,, ~ ¢m < zl}

where eT(ml/') is the o-field generated by events prior to T("'lm

g(z) - 5(3) -

Sttty

Also let ;(2) = £@)/(m - T,s.'"m)) A, {I;'(z) (2)| <6, T.,, = 0p(m*/*)}. It is clear that

Az has P(m probability contain close to one as m ~ oo.

Now

iﬂg{P,‘(";fT"‘ )['75Te... ~em S 2} - hm P(o o(:)(g(’)))h Sr. — ¢ < 2|

_qim !/
< ,E(m{P((':) i )[‘7 St.,, —tm < z]} E(m{P(m i )('7 *87,,, — ¢m < 2); Az}

E:m{?‘((m”—r )(’7 = 8Te, = tm S 2); A2}

- D(m{ hm (0, '(”(fm))(" Sr, —c < 2); Az}
|E¢-(:){ lim Py gin o)) (77 57, = ¢ < 2); 4z}
- E:"(';){}L’f,‘o Po',m(‘m))(‘v St, — ¢ < z); A2}

] + IE((Q){ lim —o (o’(l)“‘(,’))(" ‘87, —c< z); AZ} hm I,(o'.(z)(e‘(,’)”(v 7 A z)’

=L+L+IL+1 < 4e

where I; can be made arbitrarily small by Theorem 2 and Is < ¢ by Scheffé’s theorem since

the density of P,

(0.0"‘({:,’))) tends to that of P(O.O(’)(t(’))) 88 m — 00,

Let us define the excess Rr,, to be the quantity such that S~ mRr,,, €m7. A Taylor
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expansion shows that

mH(Sy,,[m) = mH (ST"' - “‘ﬁ"‘"’”"ﬂ) +VA(@)- o Rr,,

The first termn on the right hand side vanishes by the definition of 7.

The second term tends to the excess over m¥ in the normal direction of m¥ at utq since

z — ptg. We have

Sr,, )
P {mH( m ) : z} =, Bogmey (v 1.~ e < 2).
The proof is completed.

Combining the idea behind the proof of Theorem 5 and Theorem 6 it is not hard to see
that a theorem like the following should be true. The proof is omitted, since every relevant

step has appeared in the proofs of Theorems § and 6.

Theorem 10. Under the same assumption in Theorem 6, the following equality is true

. Ten — tom
lim P m <z, mH(Sr,/m)<y}
m—co" €7 { \ﬂl - to)a(zo’dn)tom

= &(z) - lim P(o‘,o},’)){" St -e <y}

Now we are ready for some applications. The first application is the approximation of

the conditional probability Pt(”.) (T < m) in Chapter 3. By (3.5)

PIAT < m) ~ (1= e P62 - (£167/(1 ~ t,), €§)172/2
E{n)(e™"") exp{~miao ~ A(&)))
where R, = (m—r)A[(§~S,)/(m~—r)]—a is the excess over the boundary at the stopping time
r =inf{n < m; (m—n)A[(§ - Sn)/(m—n)] > a}. In this case H(v) = (1-to)A[(éo—v/1—1o)
where v = (to,v) € R¥*!, ¢, € R, v € RY. By Theorem 3

B (e=m) — /; et P{U,, > z}dz - [E(U,, )|

where Y = VH[t,,(1, p(o,o(z)(sg”)))] (1, X;). X, is distributed according to Pioen (e,
and U, = ¥, Y.

=1
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The second application is concerned with the so-called “change point” problems. Assume
that X;, X,---, X, are independent normally distributed random variables and that X;

has the mean value g, and variance 1. Suppose we are interested in testing the hypothesis

Hy : py = -+ = p, against the alternative H; : thereexist %, 1 < £ < m — 1 such
that gy = -+ = pp # pp41 = pry2 = -+ = pp, if k where known, the problem would

be a two sample test of the equality of the means of the first sample X;, X5, -+, X; and
second sample Xg4,, X340, -+, X,s. For this problem the log likelihood ratio statitics would
be Akm = k(m — £)(Xi = Xim)?/m where Xi = k7 TF X; and Xim ~ (m — k)71 20, X

Since k is in fact unknown, the log likelihood -ratio statistic is

ls:ng:x":f~l Anm (4.6)

and the significance level of the likelihood ratio test is the probabiity under H, that the

random variable (4.6) exceed some constant e.

Let S, = -7 Xi. Simple algebra shows that
Anm = (Sn — nSm/m)?/n(1 — n/m).
It is easy to see that under H, the random varaibles
Sn~ 1 Sm/m n=12--,m-1

have the same joint distribution as $;,82, -, Sn-; given that S,, = 0 so the significance

level is given by
P™(T <m-1} (4.7)

where
T =inf{n:|S,| 2 b[n(1 - n/m)]l/z}

48
b=c/2 “s)

We will prove an approximation formula which contains (4.7) as a special case.

Theoremn 11. Let T be defined by (4.8), and assume that b — o0, my — o0, m; — oo,

and m — oo in such a way that for some 0 < ¢ty < t; and py > 0 m;/m — ¢; (s = 0,1),
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b/mY/? = u;, then as m — o0

mgt-)e

P™ (mo < T < m} ~ 2(c/2m)/2e=/2 / £-Vo(€ + p2e1)de
(e =113

wkere v(£ + p3¢~!) will be identified in the proof.
Proof: Let Q™) = [% Pém)df - (2x)~4/2, An easy calculation shows that the likelihood
ratio of X3, -+, X under Q(™ rolative to P‘:"') is
[m(m - n)/n]'/?exp [S2/2n(1 — n/m)]
from whick it follows by familiar argument that
o0
P mo < T S my) = m™? / EM{T/(1 - T/m)]/?exp [~(1/2)S3/T(1 - T/m)};
-0
mo < T < m, }dE(2x)r/?
X
- _Ene {7/ = T /m) exp [~ (1/2)SH/T( = T/m)] s mo < T < ma}de - (24) ™2
Q©
= (xy i [~ BT - T/ w2
-00

exp [-(1/2)(S3/T(1 - T/m) — ¢)] ; mo < T < m}d§.

(4.9)
Solving the equation ¢ = u;[tzl(l — t¢)]}/2 for t¢, we have
te = 1
I (Em)? :
We know q
T
P.f.'?){';-‘e <e}—0l Ve> 0 (4.10) ‘i
Solving the following inequality for £, we have :'}
1 8
t) < ———— < ¢t 7 - )M < £ <y (tgt - 1)H2 . -
1 l+(€/ﬂl)2 1 :“l( 1 ) f “l(to ) (4 11) .

g b

or —[ll(to—l - l)l/z < f < - }Jl(trl - 1)]/2_

It is easy to see that

lim P,L"E)(mo <T <£m)=1 for § satisfying(4.11).
m=—Q0

, ]l NN

L

L. oYt
'A‘A__'_A“‘-‘"
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Applying Theorem 3 with H(z,y) = (1/2) (;(1’—_’_;; - p'f) and tep = (t¢€, t¢). we have

B {exp [-(1/2)(531 - T/m) = )]} — [T 1B@ )" P(UL, > 2hie

where

Y=VH(tgp)'(X1+f, 1) |

- () (vmtsy)
= (e+5) [rram (e )],

U, =3, Y and X, is distributed according to the standard normal.
Define
oo
[T P, > 2 = o6+ i), (4.12)

Combining (4.10), (4.11), and (4.12) we obtain from (4.9) that

mitg'=2)/3
P (mo < T < m} ~ 2(c/27) /212 / € (€ + u2E)de.
piy!~-1)1/2

This completes the proof of Theorem 11.
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Table 5.5

Significance Levels of Group Repeated t-Test

# of obgzervations analytic Monte Carlo
in a group a mp m  approximation (2000 replications)*

2 3.65 8 40 0.050 0.052 £ 0.001

3 3.6 10 55 0.049 0.049 % 0.001

4 3.6 10 70 0.051 0.052 £ 0.001

5 3.6 10 80 0.050 0.052 £ 0.001

7 3.6 15 120 0.047 0.047 £ 0.001

*Importance sampling is used in the Monte Carlo experiments zbove
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Table 5.3

Significance Level of Modified Repeated t-Test

Analytic Monte Carlo
a ¢ my m Approximation (6000 replications)
3.8 3.6 7 30 0.050 0.053 + 0.001
395 3.6 7 40 0.050 0.062 £ 0.001
4.0 3.6 8 50 0.048 0.049 £ 0.0009
4.7 42 10 80 0.028 0.027 £ 0.0007
5.0 45 10 100 0.023 0.023 £ 0.0066
Table 5.4

Powers of Level of Modified Repew.ed ¢-Test

Analytic Monte Carlo
a e my m n Approximation (2000 replications)

3.8 3.6 7 30 0.8 0.952 0.956 = 0.005
395 36 7 40 0.7 0.960 0.959 + 0.004
0.5 0.717 0.727 £ 0.010

40 36 8 30 06 0.946 0.943 % 0.005
0.4 0.613 0.626 + 0.011

4.7 42 10 80 0.5 0.947 0.937 £ 0.006
0.4 0.779 0.770 £ 0.010

5.0 45 10 100 0.45 0.940 0.938 £ 0.005
0.3 0.553 0.550 £ 0.001

........ T ) TS O R R
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Table 5.1

Significance Level of Repeated t-Test

Laalytic Monte Carlo
¢ my m Approximation (2000 replications)
3.8 7 30 0.062 0.053 £ 0.001
4.0 8 50 0.047 0.048 + 0.001
45 10 75 0.032 0.033 =+ 0.0006
50 10 110 0.024 0.023 + 0.0004

*Importance sampling is used in the Monte Carlo experiments above

Table 5.2
Powers of Repeated t-Test
Analytic Monte Carlo
@ mog m n Approximation (2000 replications)
3.8 7 30 08 0.946 0.951 £+ 0.005
0.6 0.734 0.742 £ 0.010
4.0 8 30 06 0.934 0.933 + 0.006
04 0.584 0.596 £ 0.008
40 10 75 0.5 0.950 0.948 + 0.005
0.3 0.518 0.522 £ 0.011
50 10 10 04 0.882 0.889 + 0.007

0.3 0.581 0.581 % 0.011
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where in the equality above we have used Theorem 2 of Chapter 2 to obtain
v-(€1, &) = ~4{lexp(200/(1 - g,)) — 1]*/2} - {(1/2) log(1 + 62)/[F* — (1/2) log(1 + §%)]}
= vy {[exp(2a0/(1 - £g,)) — 1]/2} - [ao/(1 - £¢,)]
- {exp[200/(1 — £g,)] = 1 ~ a0 /(1 — £¢,)}
and the equality
IB(Er(1 = Eg,)™2, &) 7Y/2 = 2712 (& — E3(1 - i) 72
= 272 £ expl3ao/(1 -~ Bg,)]

Next we consider the group repeated ¢-test. The stopping rule we are interested in here

is
1 = inf {n; n=mo+ik,s=0,---, [_m-_km_g] ynA(Sn/n) > a}

where k is the number of observations in a group. It is easy to see that 7 is a stopping time.
A moment’s reflection we find that the corresponding significance levels and powers are the
same as k = 1, except the excess over the boundary part. To find the excess over the boundary
part, it is sufﬁc.ient to identify the increment of thie random walk which generates the excess
over the boundary. In this case, using the forward method, the corresponding increment of
the random walk is Uy = E.L; Y; where the distribution of ¥;’s are given in (5.2). Using the
backward method, the increment of interest is V3 = Ef:x Z;, where the distribution of the
Z;’s is given by (5.4).

Tables 5.1 - 5.4 below give some examples of the approximation of powers and signifi-

cance levels of both RST and MRST. For comparison, the results of Monte Carlo experiments

are 2lso included. For details of numerical computation, see the Appendix.
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What remains is to approximate

// e~msolta)-nta)ge ge,
A

Since (él, fz) is located at the boundary of the set A, the multidimensional Laplace method
does not apply. The argument below uses a chance of variable to convert the integral into a
form which can be handled by iterative approximation. The change of variable is suggested

by Fig. 1.

//AexPl_m(d"’(f?) - n1))d2d6
[~ -] Co
=/o /c' exp[—m(do(y2) - "”W;h]y;/zdy:dm where y; = &6;112 yo = £

) Co
= / exp[—m(do(y2))lys/? [ / exp(mnyvs/ 2)ﬂlm] dya
1] C

(5.23)

N fow exp|—m(do(y2)) vy {(mny3/*) " {exp(mn}/?co) - exp(mny}/?cy)]}dys

~ /;w exp[-m(do(y2))] - (mn)~* - exp(mny}/?co)dy,

[~ -}
= (mn)~! / e~ dy,
0

where the function g(-) is defined by (5.19). Now Laplace’s method can be used to approximate

(mn)™! /o ” "ol dy, ~ (mn)“[2:/(_mg"(g‘))]xlzcma(é.)_

By (5.22), (5.23)

Py{mg < 7 < m,A(Sm/m) < ¢/m} ~ exp[-m(ao + n*/2 + 9(£2)]
v-(€1, ) -0 2emg" (&) - (1 - £g,) - 1B(&:(1 - te,) 2 &2)|)/2
= exp[~m(ao + n*/2 + 9(&)] - v4{lexp(2a0(1 - i¢,) 7] - 1J*/2} - exp|3a0/(1 ~ ig,)] - a0

n~ - {exp(2a0/(1 ~ fg,)] ~ aa(1 = £g,)~1}~2 - [22m( s + (1/2)eond?)(1 - fe.,)’l‘(’ : )
5.24
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y = 6(E)nE,

“ T~

{g,=0, y=0(£,)} 4y

{g,=1, -ng, =y}

A

N

’
{

Figure 1

Since ¢"(€2) > 0 g(§2) has minimum.

Let &, /2 = z be the minimum satisfying

22+ conz — 1= 0= z = {[(con)? + 4]'/2 - con}/2

& = 272(2/(cin? + 4)/2 = con]}? = [(c3n® + 4)Y/2 + con]? /4 (5.20)
b = cofy/? = oz = (cln® + 47 + con. (5.21)

As we pointed out earlier the only important part of the integral (5.17) is the integral
over an arbitrarily small neighborhood N of (£, 2). Part of the intergrand of (5.17) is

approximately constant over N, namely

(1 - ‘fo)-l/zlz[&(l - tEo)-‘v 62“-,/2”-(60)

. . . . . (5.22)
m (1= Eg) 2B [E(1 = £g,) 2, &)~ 2v_(&o) over N

where ¢, satisfies (—1/2)(1 — £¢,) log{1 - [é -f;llz(l = lteo)*]*} = a/m.
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¢0(£2) in a neighborhood of 1
d0(€2) = do(1) + ¢'(1)(&3 = 1) + (1/2)4"(+) (&3 — 1)2
~ (1/4)(€2 - 1)* ’

/ e~méolén gg, ~ / "~ exp(-m2*/4)dz = (4n/m)V2. (5.16)

| Substituting (5.16) into (5.15) we have

Po{mo < r < m, A(Sm/m) < c/m}

~ e7%(m/x)'/? / 1 (1= te) MAIB(6(1 = tg,) 72, 1) 7Y2, v (61, 1)dEs.

Alés=1
The change of variable log(1 + 82) = ~log[1 ~ £3(1 - t¢,)~?) transforms the expression above
into 2¢~%(a/x)!/? f;°[log(l + 62)]~Y2v,(8)d# in agreement with (5.1).

Now let us bring our attention back to (5.14) with n # 0. The integral to be evaluated
is
//A(l = teo) AL [6(1 - tg,) 72, &) 7V 20- (€0) expl-m(do(£2) — nér)ldEads.  (5.17)

The set
A={0<tg S 1-mo/m, A(&) < ¢/m}

= {mo/m <t <1, (1/2)log{1/[L - £2/€}/%]} < ¢/m} (5.18)

= {e1 < &/6" < eo}
where t; =11t and ¢p = (1~ ¢'?..‘)1/2, ¢1 satisfies (mo/2m)log{1/[1 - (e1mo)?/m]} = ao.
It is clear that the only part which is of first order importance in (5.18) is the integral over a
small neighborhood of (£, fz) where (fl, fz) minimize $o(&2) — néy over A.

We now proceed to identify (£;, €;). The following picture helps us locate (¢;, &).

It is clear from Fig. 1 that the minimum of ¢(§2) — n€; over A occurs on the curve

E;/C;/z = ¢g. On this curve ¢o(§2) — n¢; is equal to

(1/2)(€ = 1 - log &) ~ neay” = g(62)- (5.19) 2
dy(&)

= (1/2)(1 - &5 - eon§ /%), ‘;
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Next we consider the problem of approximating the power of the modified repecated 7-
test. It is easy to see thzt the powers of the modified test depend on the parameter g4, 02 orly
through n = p/e, so without loss of generality we may take o = 1 and p = 5. By symmetry
the power at n equals that at —n, so we may assume n > 0. The power of this test at n, by
definition, is equal to
Py{mg S r <m}+ Pp{r>m, A(Sp/m) 2 ¢/m}

= Py{mg < v < m, A(Sm/m) < ¢/m} + Pp{A(Sm/m) 2 c/m}. (843

The second part on the right hand side of (5.13) can be easily obtained by approximat-
ing the tail probabiities of the noncentral T-distribution, so it is sufficient to approximate
Py{mo £ 1 < m, A(Sm/m) < ¢/m}. By Proposition 1 of Chapter 2 under P,, $,, has

asymptotic density in the following form,
fm.q(m() ~ ("m)-llmf)l_'/z exP[‘"‘('ﬁ(fo) - ’761 by "2/2)]-
Unconditioning (5.2) with respect to fimq(m§) gives

¢~ %(m/2x) fA /A IE‘(! — te) M2 lE(1 - tg,) L, &)V 20— (&0)
- exp[~m(do(£2) — né1 + n?/2)|dE2d 6,

where A = {0 < 25 < 1 —~mg/m, A(&) < ¢/m}, Aj¢, denotes the cross section of A in the £

(5.14)

direction when §; is given and A = {£;, 0 < ty < 1 — mg/m, A(&) < ¢/m}. Observe that
when n = 0 (5.14) should reduce to (5.1). The following argument shows that indeed it does.

When n = 0 the integral part of (5.14) reduces to

/. [ / (1= 1) V2T (61(1 — tg,) ", &)™ (Lo)e ™o lE)dg, | dg;. (5.15)
A 1JAlG ’

Since ¢o(1) = 0 = min, ¢o(z), it is easy to sec thta the integral over the interval I, =
(1= €m, 1+ €n) with limm—.co €m = O constitutes the major contribution of the inner integral
in (5.13). For m sufficiently large (1 — tg,)~Y2|B (£&1(1 — te,) ™Y, £2)|~2/2w_(&) is effectively

constant (with respect to £;) over I,. We still have to evaluate [, ¢~™¢(3)d¢;. Expanding
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The first term on the right Lhand side of (5.10) can be computed easily by calculating the tail
probability of the t-distribution. So the main task here is to approximate the second term
Py{r £ m, A(Sm/m) < ¢/m}. Using the backward mcthod, the procedure of approximating
Py{r £ m, A(Sm/m) < ¢/m} is no more complicated than that of Po{r < m}. The orly
difference is the range of integration is changed. To determire the range of integration, let us
recall that in obtaining (5.8), we made the following change of variable log 1 + 62 = —log|1 ~
(2/1—tg;)?], wkere z = & 5;'!/2, 2 and ¢, satisfying (1 —2¢,) log{[1 — (2{1 —t¢,) "]~} = 2a0.

Now
{€:A(€) <c/m} & {z:(1/2)log[(1 - )] < ¢/m} & {=: [z] < 65(1 + 63)~"}
where 83 satisfies ¢/m = (1/2)log(1 + 83). Clearly
1~ te, = 2aollog(1 + 6%)]! = log(1 + 63)[log(1 + 0%)]?

8, eatisfies a/m = (1/2)log(1 + 62). Substituting z = 63(1 + 02)~! and 1 - t¢, = log(1 + 63) -
[log(1 + 6%)]! into log(1 + 62) = log{[1 — z%(1 — t¢,)~%]™!} we find the lower bound of the

range of integration § satisfies

(5.11)

2 [log(1+6})| 63
1+ 62 |log(1+62)|  1+63

Of course we take only the root # > 0 of (5.11). Note that when 8; = 8, # = 0;. The upper

bound of the range of iniegration remains the same. We have

Po{mo <7< m, A(Sm/m) < ¢/m} ~ 2(a/x)/2e® /;o[log(l + 0%))~Y2y (6)de.  (5.12)

The sharp-eyed reader may discover the possibility of obtaining (5.12) by modifying
Siegmund’s method, mentioned in the last paragraph of page 32, along the same line of
arguments on pages 11-13. This possibiity does not exist because there exists a deep-buried
measurability problem. To make a long story short, the two dimensional sufficient process
(Xr, Xi, 0, X?) is not measurable with respect to the o-ficld generated by the maximum

invariant process (X;‘X;,X;'IX ,---,X"‘X,.).
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so Y has density

fr(y) =2(1+6%6"2 f: e~/ (20%)~ (1) 7P (5 + 1/2)) 12U/
i=0
-exp{(1+ %) - [y — 1/2 ~ (1/2) log(1 + 62)]0~2}

A{0P(1+0%)7M 1 + log(1 + 6%) = 2yl Y2 - 1 Lo 1 p24 a2 Log(1+07) (¥)-

After some simple algebra we find that

fr(y) = 07" exp{(1+ 6%)y — (20°)7*[2 + 6% + log(1 + 6%)]} - i(ﬂ“‘ + 072y
i=0

PG+ /27 27 ()7 {1/2 4+ (1/2) 1og(1 + 6%) = g} Y2 1o g a/2) g aeen)

—Z has density

Foaly) = 2070 3 expl—(20%) (0 + (28741 + P GYH0G + 1/2)[ L 2G40
§=0 .

rexp{0™%[y ~ (1/2) = (1/2) log(1 + 6*)]} - {072[1 + log(1 + 6%) ~ 2]} ~2/2
Lo /21 +og(1+87)) (¥)

= 07t exp(8=2ly — 1 = 03/2 = (1/2)log(1 + P)]} - S (4% + 42 - (31)*
=0

[T+ /2171279 {(1/2)[1 + log(1 + 6%)] — p} ™12 - 1L s paps srog a3y (¥)-
The likelihood ratio of Y with respect to —Z is surprisingly simple fy(z)/ f-z(z) = ¢2.
Now applying Theorem 2 of Chapter 2 we have

vi(0) = v_(0)pz/pr. (5.9)

Simple algebra shows that pz = EZ = 62 - (1/2)log(1 + 6%), py = EY = (1/2)log(1 + 62).
Now by (5.9) it is clear that (5.8) and (5.1) agree. Next we consider the modified r.pcated
t-test. The stopping rule is still r, but we add the set {mA(Sn/m) > ¢} to the rejertion
region, that is, we reject the null hypothesis when either r < m or {r < m, mA(Spn/m) > ¢},
where 0 < a. The significance elvel of this test is

Py{r < m} + Po{r > m, A(Sm/m) > ¢/m} = Py{(Spn/m) > ¢/m}

(5.10)
.+ P{r < m, A(Sp/m) < ¢/m}.
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W o (m = 12 [o(1 = )72 = (m = )21~ 22)72 = (m ~ 1) (62 - €D

and E:/ e -0 - te,)2]%/2 = exp|3ag(1 — tg,)~!]. Substituting these results into the

integral above and using Stirling’s formula on the gamma functions we have

e~*(m/2x)/2 . /{0 <t/ )exPl300(1-feo)'ll(l“co)'l’zy—lfo(Z)]d-’—- (5.6)
<lgg<l=mo/m

We need to make another change of variable. Let
log(1 + 6%) = —log[l - (2/1 — tg,)?] = 2a0(1 — t¢,)". (5.7)

Observe that tg, = 0 implies § = (¢2%/™ - 1)}/2 and t¢, = 1 — mg/m = 8 = (e20/m0 — 1)1/2,
2 = (1 —tg,)(1 + 62)7%/2[log(1 + 6%) — 26*]{log(1 + 62)]. Substituting these results into
(5.4) gives

Py{mg < r < m} ~ 2(a/x)*/2c° /"o[log(l +0%))"1/2
- [Ea(O)[26 — log(1 + 82 - flog(1 + 6%)] 4o

(5.8)

where v_[£(9)] = limjeo E{e~(V»~Y} where V,, = i1 Ziy 21,2,,- - i3 an i.i.d. sequence

of random variables, each Z; has the same distribution as
Z = (0%/2)X? - 6(1 + 62)/2X + (1/2)[6% - log(1 + 6%)}), X ~ N(0,1).

To show that (5.6) agrees with (5.1) we write Y, Z in the following form

Y = —(1/2)0%(1 4 62)" (z - 871)% + (1/2)(1 + log(1 + 6%))

Z = (62/2)(X - (1+62)4/2671)? — (1/2)[1 +log(1 + 67)]

Let x2(7) denote the noncentral x2-distribution witi one degree of freedom and noncen-

tral parameter 7. It is easy to see that Y, and — 2 distributed as —(1/2)[62/(1+ 0%)]x3(8-2) +
(1/2)(1 + log(1 + 62)) and —(1/2)8*x3(672 + 1) + (1/2)[1 + log(1 + 6%)] respectively, and they
bave the same support (—oco, (1/2)[1 + log{1 + ¢2)]), hence the likelihood ratio oi Y with
respect to —Z exists. x3(7) has density of the following form (see e.g. Ferguson (1967))

o
Y e 2 ()OS + 1/2)] PR a2y ) (2),
j=0
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z); (€2 — 2)/(1 - z)]. Straightforward calculation gives

Z = VH(te,n) - (1, VEX, £X?)
= (1/2)[&/(1 - te, )P {62 — [6/(1 -t )P} X2 = {&/16" - (1 - t6,)]}
{6~ [6/(1 =t )P} X + (1/2){6 (1 - tg,)™?
(62 - (1~ te) )" ~ log{&al2 - €2(1 - 1) 77}

where X is distributed according to the standard normal. In order to obtain the significance

(5.4)

levels from (5.3) we have to uncondition (5.3) with respect to Po{Sm € dm§p}. Observe that
each term on the right hand side of (5.3) is a function of z = §; f;/ 2 hence a function of
y = (m=—1)Y2z.(1-22)~Y2, This reduces the conditional probability PG(M) which in general
is a function of two variables to a function of one variable. This is because the likelihood
~atio statistic is invariant under scale change. It is easy to see that y has a ¢-distribution with
(m - 1) degrees of freedom. Now multiplying (5.3) by the density of y and interating over
the appropriate range give

-a N2 1e — £2(1 — . \-21-3/2
‘ /{k%«_m/m)(& €92 16 - €2(1 - tg,) 7] 65

(1= tg,) " 2u_(&o) ™A gy (y)dy
where gm-1(y) = N{m/2)[(m - 1)a]=1/2.[L{(m - 1)/2)}]--[y?/(m — 1)+ ]]~™/2 is the density

of the ¢-distribution with (m — 1) degrees of freedom.

The second factor on the right hand side of the equation above cancels with

emMO) = exp{(m/2) logléa/ (€2 — €I} = [€/(€2 - EN™* = [v?/(m — 1) + 1]™/*
and (5.5) reduces to

=*F{m/2)[(m = D} 2{r{(m — /21 [ (62 - 12

(0<¢¢°$l—mo/m)
[Ez - Ef(l - tfo)-zl-slz (1 =g ”'2V-(€o)dv

= =*T(m/2)](m - Dl 2ir((m - )/} [

(<0¢°Sl-mo/m)

(62 = €1)*/%1€a - €11~ t,)*I7%(1 - tzo)"/’v-(fo)%dz

a“e et
™o
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where 8 = (e2%/™0 — 1)1/2 g, = (e2°/™ — 1)1/2, 4 (0) = limj—ce Eg{c~ WY} with U, =
Y i1 Y, Y1,Y2,- - is aniid. sequence of random variables, each having the same distribution

as
Y =—(0%/1+0%)X%/2 + (8/1+ 6%)z + [62/(1 + 6%) + log(1 + 62))/2, (5.2)
with X distributed according to the standard normal distribution, and n = inf{n, U,, > b}.

The original forward metkod (see Lalley (1983)) gives the same result. (Private commu-

nication). Woodroofe (1978, 1979) coutains a mistake in the general approximation formula,

go his results on repeated T-tests are also incorrect. The derivation of (5.1) using Siegmund’s
method is simpler than that of the original forward method because it takes advantage of the
invariance property of the generalized likelihood ratio statistic. The backward method also

makes use of this invariance property in an implicit way. More on this point later.
By (3.5)
P {mg < 7 < m) ~ (1= te) M2 B(0) [V

(5.3)
[£[€1/(1 - to), &2)7*/2 exp|—(as — Al&o))m] - v_(&1, &)

where
Em™l =& = (£1,61), a=agm, tg =inf{t:0<t < 1—mg/m,

(1=t)A(&1/(1 - t), &2) = a0}
L(£&4, &2) is the covariance matrix of (W2, W). W is normally distributed with first and second
moment given by B(W) = £ E(W?) = £;. Simple calculation shows that the determinant of
Tis [B(6 &)l =2(& - £])°

v-(6, &) = lim EE)(e), B = (m = TAI(E - S7)/(m ~T)] - o
T = inf{n; (m - n)Al(€ = Sa)/(m = )] > a).

By Theorem 3 of Chapter 4, R,, under PG(::’) has the same limiting distribution as the

excess over the boundary by a random walk with increment VH(te p) - (1, V& X, £X?)
where i = (1,0, §,) is the mean vector of (1, oz, £222), H(z,y,2) = (1-2)A|(& -y)/(1 -

.............. « . - . . . - - - » . - . ot - to. " - - . A . - o . ~ -

Cen 0 .."-, bt P S S e PRI R .u. BRI .‘_-_ L e e e s e R T S e T S R R R STel e, A
P [ R P TP S P Lt e P PR N . . . R . . AR N

T SR DI S PIEINS IR I AR P I P IR SPIRPRP IV P SRR A S PP SRETE W SPE, GRS, PP P LT, PR TR TN G S STV GO SRR A L)




T Tl N e W W g T WL Wy W Ve o o e 8 » it i dinea et R S - e Padie)

b Chapter &

B
1))
An Example: The Repeated T-Test
N Assume Xj,X,, -+ are indcpendent and normally distributed with unknown mean g
:‘; and variance o2, and that we are interested in testing Hp : p = O against H; : g # 0. Let
- 4, +(-) denote the log likelihood of X;. Some simple algebra shows that the (generalized) log
& likelihood ratio statistic is
% B/n) = (n/2) 2
nA(Sn/n) = n($(Sn/n) — $0(5:° /n) = (n/2)log
- (Sn/n) (¢(Sn/n) o(Sa S,(.z’/n _ (S,(.")/n)z
.- where S, = (S"ll)’ '('2)) = (2?:1 X, ?:1 pn)
= 1
- $(21, 22) = 8up by 5(21,23) = 3[(22 — 1) - log(22 - 23)]
ow
. $o(z2) = sup bo,o(23) = [(z2 — 1) — log z2]/2.
:-',' The repeated T-test is defined in terms of the following stopping rule r = inf{n; n >
V]
- mo, nA(Sn/n) > a}. The test rejects the null hypothesis if and only if r < m. We first
o consider the problem of approximating the significance level of the repeated ¢-test. Observe
‘ that the probability Py o(mo € r < m) is independent of 0. So we may write Py{mg < r < m}
for significance levels.
s A variant of the forward method (see Siegmund (1985) for details) which involves taking

the likelihood ratio of the maximum invariant process (2, ,yn) = (zf‘zg, z7 2y,

z;'z,) then mixing it by Lebesgue measure over the invariant paramter space gives us

Py{mo < 7 € m} ~ 2(a/x)}/?c /,"'llosu + 03]y, (0)do (5.1)
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> 82  Chapter 5: An Ezample: The Repeated T-Test
I-\-.
o -
-'t-”*: Powers of Group Repeated t-Test
# of observations analytic Meate Carlo
W
j:' in a group @ mg m n  approximation (2000 replications)
< 2 365 8 40 0.7 0.962 0.961 + 0.004
heS 0.6 0.880 0.888 & 0.007
Yo 0.5 0.726 0.741 + 0.010
3 36 10 55 0.6 0.969 0.966 + 0.004
ol 0.4 0.681 0.685 = 0.010
L 4 36 10 70 05 0.949 0.940 % 0.C05
S 0.3 0.527 0.518 + 0.011
5 36 10 8 05 0.973 0.961 + 0.004
0.4 0.855 0.843 £ 0.008
e 0.3 0.590 0.574 £ 0.011
L SRR
0o 7 36 15 120 0.4 0.970 0.966 = 0.004
o
T,
S 0.3 0.790 0.773 + 0.009
) 0.2 0.420 0.414 £ 0.011
NG
o
%
-.’__.

-
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Appendix

Here we give some details about the numerical computation performed in Chapter 5.

To approximate Pp{mg < r < m,A(Sm/m) < ¢/m} for n # 0 we use (5.20). For
Po{mo{< r < m,A(Sm/m) < c/m} with ¢ < & we invoke (5.10). To approximate the
significance levels of repeated the significance levels of the repeated significance test P;{mo <

r < m} we use
Py{mo S 1< m} = Py{mo < r < m,A(Sm/m) < a/m} + Po{A(Sm/m) > a}. (A1)

Replacing ¢ by a in formula (5.10) gives the approximation of the first term on the right hand
side of (A.1). The second term is easily computed by calculating the tail probability of the

t-distribution.

To complete the approximations above, we need to compute v4(8) (the excess over the

boundary by the forward process) numerically. The following proposition is useful.

Propositon 1: Let Y;,Y;,--- be independent and identically distributed nonarithmetic
random variables with a finite positive mean u > 0. For b > 0 define S, 3°7, Y; and
ry = inf{n, S, > b}. Then

lim E{exp[-a(S,, — b)]} = exp{»~? [/°° a?(a? + ¢2)"1I6(t) — x/2]de

T e ° (4.2)

-/ a(a® +t2)"(R6(t) + log ut)dt] }
°

where R6 and I§ are the real and imaginary part of 6(t) = log{1/(1— f(t))] with f{t} = Ee*¥1,

the characteristic function of Y;.
Proof: See Woodroofe (1979).

Now it is sufficient to identify f(t) for Y} given by
Yy = —(02/1+6%)X%/2 + (0/1+ 6%)X + [02/1 + 6% + log(1 + 62)}]/2

with X ~ N(0,1).
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Some straightforward algebra shows that
£(t) = (1 + 0%)2(1 + 02 + t6%)~¥/2 exp{(it/2)[log(1 + 62) + 62/(1 + 6%)]}
cexp{(—1/2)8%2 - (1 + 6%)7}(1 + 6% + it8*)™"'}
= exp{(1/2) log{(1 + 0*)](1 + 6%) + £204]1/2} — (£20%/2){(1 + %)% + 2041}
-exp{(§/2)[t4*(1 + 62)~! — tan~}[t43(1 + 0%)"] + £36%[(1 + 0%)% + £20%]

(1 46%)71 + tlog(1 + 62)]}
30
(1= F()]% = 1+ exp{log{(1 + 63)[(1 + 62)? + £20*]~Y/3} — 202((1 + 6°) + £26%]"}
= 2exp{(1/2) log{(1 + 82)[(1 + %)% + £20%]~2/2} — (£26%/2)[(1 + 62)® + 24*]"1}
cos{(1/2)[t6%(1 + 6%)~! — tan~'[¢0%(1 + 6%)7) + t30*[(1 + %)% + £20%] 2
(1 + 6%~ + tlog(1 + #)]}.
It is easy to see that
R5(t) = ~log 1 - f(¢)| ' (A3)
and
Iﬁ(f) = sin " {{|f(¢)I/12 - £(8)]] - sin{(1/2)[t6%(2 + )7 (44)
~ tan~2[e02(1 + 02)71) + £204(1 + 62) + £204)" + tlog(1 + 62)]}}.

Now substitute (A.3) and (A.4) into (A.2) and perform the numerical integration to obtain
u...(ﬂ).
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